
第1章導論
(INTRODUCTION)

資料結構

鍾宜玲

為甚麼要學資料結構？

計算機科學家維爾特 (Niklaus Wirth, 1934/2/15~)

於1975年寫了一本書，書名為

“Algorithms  Data Structures  Programs”

(演算法 資料結構 程式)

程式設計師必須有資料結構的基礎，才能撰寫出優良

的程式。

+

資料結構 (DATA STRUCTURE)的定義

計算機系統中資料的「組織方式」及「存取運算方法」

探討如何將資料有系統地安排組織配合適當的演算法以
達到最佳化的處理結果。

設計資料結構時主要考量：

1. 如何產製 (create) 儲存結構

2. 如何儲存 (store)資料

3. 如何取出 (retrieve) 資料

4. 有哪些運算 (operator)

資料結構

10 50

10 5060

60

演算法(ALGORITHM)的定義

在有限步驟內解決問題的方法或程序。

 Donald E. Knuth(高德納) 提出五個基本要素：

1. 輸入指令 (input)：零個或一個以上的輸入資料。

2. 輸出指令 (output)：一個或一個以上的結果輸出。

3. 明確性 (definiteness)：指令必須明確不混淆。

4. 有限性 (finiteness)：在有限步驟內執行結束。

5. 有效性 (effectiveness)：又稱可行性。

描述演算法的方法

 使用自然語言 (中文、英文……等)

 數學式

 程式語言

 流程圖 (flowchart)

 虛擬碼 (pseudo-code)

演算法範例
-- 以自然語言描述

求兩實數相減之絕對值

解：

(1) 輸入兩個實數 a 與 b 的值。

(2) 設定實數 c 值為 a  b。

(3) 如果 (c < 0) 成立，

則實數 c 設定為  c。

(4) 輸出實數 c 的值。

演算法範例
-- 以流程圖描述

開始

輸入a, b兩實數

c = a - b

(c < 0)?

c = - c

輸出c

結束

是

否

求兩實數相減之絕對值

解：

(1) 輸入兩個實數 a 與 b 的值。

(2) 設定實數 c 值為 a  b。

(3) 如果 (c < 0) 成立，

則實數 c 設定為  c。

(4) 輸出實數 c 的值。

演算法範例
--以 C 語言描述

開始

輸入a, b兩實數

c = a - b

(c < 0)?

c = - c

輸出c

結束

是

否

求兩實數相減之絕對值

程式的效能分析

好程式的條件

 執行結果正確

 可維護性高

 執行效率高

1) 執行時間(run time)的長短：簡略以程式執行的敘
述多寡(頻率計數)來測量

2) 儲存變數資料所需的記憶體空間大小

電腦執行結果要對！

程式碼容易看懂！

執行時間要短、
記憶體用得少！

頻率計數(FREQUENCY COUNT)

可執行的敘述才會影響程式的執行時間

頻率計數

1. 計算程式敘述被執行的總次數

2. 用來評估程式的執行時間，以判斷演算法的優劣。

10

範例
計算 N 位學生的總平均分數

程 式 執行次數

float avg(float score[], int n)

{

int i;

float sum, average;

if(n <= 0)

average = 0;

else{

sum = 0;

for(i=0; i<n; i++)

sum += score[i];

average = sum / n;

}

return average;

}

1

1

1

n+1

n

1

1

執行總次數 2n+6

BIG-O 函數

程式的效率以頻率計數函數的級數 (order)分級
描述，稱為時間複雜度 (time complexity)。

時間複雜度分為

Ω：最佳時間複雜度

Θ：平均時間複雜度

O ：最壞時間複雜度

一般皆以 O 符號來表示時間複雜度，讀作
“Big-oh”。

12

不可靠！

不易計算！

容易計算，
品質保證！

範例

考慮以下兩個頻率計數函數為：

當資料量 時，

的執行時間永遠比

好。

 是 的上界。

 的最壞時間複雜度為

100010)(2  nnnf

2)(nng 

2(()) ()O g n O n

)(2 ng

380  nn

()f n

()f n

)(2 ng ()f n

頻率計數與時間複雜度

時間複雜度的計算

1. 只取頻率計數函數的最高次項。

2. 不計係數。

範例：若程式敘述之執行次數為 3n+5

1. 則以O(n) 表示，讀作 “Big oh of n ”。

2. 程式執行時間之成長速率與資料量 n 成正比。

3. 當資料量變成10倍時，執行時間大約也是10倍的時間。

時間複雜度(TIME COMPLEXITY)

頻率計數 時間複雜度

120 O(1)

2logn+5 O(logn)

3n+100 O(n)

2nlogn+3n O(nlogn)

3n2+5n+8 O(n2)

n2 *(n-1)/2 O(n3)

3*2n + 5n3 +7 O(2n)

n! + 2n5 + 7 O(n!)

優劣順序

優

劣

時間複雜度排序

(1)O 
2 3(log) () (log) () () (2) (!)nO n O n O n n O n O n O O n     

常見的複雜度其大小排序為

0

0

1 2 4 8 10 16 32 n

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

65536
2 n

n 3

n 2

n log n

n

log n

